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Abstract

Large Scale Bridging in SiC/MAS-L (ceramic glass matrix) composites was investigated by using DEN specimens under tensile
loading conditions with in situ Acoustic Emission monitoring. The AE data were successfully classified using Unsupervised Pattern
Recognition Algorithms and the resulted clusters were correlated to the dominant damage mechanisms of the material. The evolu-
tion in time of the different damage mechanisms is feasible after the pattern recognition classification. Microscopic examination was
used to correlate the clusters to the damage mechanism they correspond and thus to provide the failure mode identification based on
AE data.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is now well established that, continuous fibre rein-
forcements provide a ceramic composites with the most
increased fracture toughness and damage resistance. The
enhanced damage resistance and increased fracture
toughness of continuous fibre reinforced ceramic matrix
composites (CFCCs) is due to their inherent ability to
effectively redistribute stresses around holes, notches
and cracks, a phenomenon which stems from the stress
of shielding within the process zone around the crack
tip. Fracture in the vast majority of CFCCs is associated
with the formation and propagation of macrocracks
(Class I and Class II fracture) [1]. The corresponding
process zone consists of two parts: the so called bridging
zone with fiber bridging and pull-out developing within
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the macrocrack and a matrix cracking process zone
ahead the macrocrack. The increase of fracture resis-
tance is the result of the synergistic effect of several
energy-dissipating mechanisms acting in both zones. In
the matrix process zone a complex set of phenomena
such as matrix microcracking, fibre/matrix interfacial
debonding and transformation toughening may take
place concurrently, while into the bridging zone the
cracked matrix is bridged by intact and/or failed fibres,
which debond, slip and pull-out. The role of the bridg-
ing zone in the fracture resistance of the composite is
of particular importance as the bridging fibres carry a
significant portion of the applied load, hence resisting
further crack opening. When the dimension of the bridg-
ing zone is relatively small compared to the characteris-
tic specimen dimension (small scale bridging SSB), then
the fracture behaviour of the ceramic composite is well
demonstrated by the crack growth resistance curve (R-
curve) which is an intrinsic material parameter. On the
contrary, whenever the dimension of the bridging zone
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Fig. 1. DEN specimens configuration.
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is large enough (comparable to the characteristic speci-
men dimension) a phenomenon known as large scale
bridging (LSB) occurs, which is encountered in many
cases of continuous fiber ceramic composite materials
(CFCCs). In this case the resulted R-curve is an extrinsic
material property, depending upon the specimen geom-
etry and dimensions [2,3].

Recently, Acoustic Emission monitoring has been
used for the study of the fracture behaviour of CFCCs
under quasi-static and dynamic loading mainly in-
tended to the detailed identification of the fracture
mechanisms active during the damage evolution and
trying to introduce AE activity prior to catastrophic
failure as characteristic damage index for the health
monitoring of CFCCs structures and their remaining
life prediction [6,7]. The aim of the present work is
to investigate the failure mechanisms in SiC/MAS-L
composites by using an in-house unsupervised, pattern
recognition (PR) technique, which proved to be capa-
ble to classify the AE data, recorded during the labora-
tory testing and to illuminate the different failure
modes. Up to now, the majority of the proposed appli-
cations of AE for the characterization of composite
materials are based on the �Conventional� AE analysis,
which usually incorporates investigation of the activity
in diagrams of cumulative hits versus load and the cor-
relation of some AE features, such as amplitude and/or
duration, to basic damage mechanisms. Nevertheless,
in the case of ceramic composites, these techniques
are not sufficient due to the large number of damage
and stress redistribution mechanisms, such as matrix
cracking, fibre/matrix debonding and sliding, as well
as stochastic fibre failure, which are active continu-
ously during loading. In contrast, the unsupervised
PR technique proposed in this work takes into consid-
eration a large number of AE descriptors and thus, it is
a more powerful tool since its multivariate approach
provides detailed information for the activated damage
mechanisms within the material structure and their
evolution during loading.
2. Experimental procedure

The material used in this study is a laminated cross-
ply SiC/MAS-L composite processed by EADS (ex-
Aérospatiale, France). The reinforcing SiC fibres are
grade Nicalon NL202 with a chemical composition in
weight concentration terms of 56.6% Si, 31.7% C and
11.7% O. The glass-ceramic matrix contains MgO,
Al2O3, SiO2 and LiO2 and is made via the sol-gel route.
Plates of 2.0 and 3.0 mm thickness with 8 and 12 plies,
respectively, were produced via hot pressing. The lami-
nae were stacked together in a symmetric [0–90�]2s and
[0–90�]3s orientation for the 2.0 and 3.0 mm thick plate,
respectively. The effective volume fraction of the fibres
in the loading direction is 0.17 [4], whereas the matrix
stiffness (75 GPa) and failure strain are lower than the
corresponding values for the fibre and hence cracks ap-
pear first in the matrix. Typical Double Edge Notch
specimens used in this study are presented schematically
in Fig. 1. All tensile tests were performed using a MTS
Universal Testing Machine equipped with hydraulic
gripping system, under displacement control, at con-
trolled environmental conditions of 25 �C and 70% rela-
tive humidity. AE activity was recorded during the
tensile testing of the materials. The data acquisition sys-
tem used was a Mistras 2001 of Physical Acoustics Cor-
poration. The AE signals were monitored by using two
resonant transducers (NANO 30), which were attached
to each specimen by means of a suitable coupling agent.
Pre-amplification of 40 dB and bandbass filtering of 20–
1200 kHz was performed by 2/4/6-AST pre-amplifiers.
3. AE monitoring

Acoustic emission activity was monitored during the
quasi-static tensile tests of DEN specimens. The acquisi-
tion parameters for the two active channels were: thresh-
old and gain equal to 30 and 20 dB, respectively, while
the peak definition time (PDT), hit definition time
(HDT) and hit lockout time (HLT), were set at 50,
100 and 500 ls. Pencil break tests were used for the cal-
ibration of the applied set up. Figs. 2 and 3 are two rep-
resentative AE data plots. They clearly show the load
drop due to the bridging effect and the significant in-
crease of the AE activity at this point.



Fig. 2. AE energy vs. time.

Fig. 3. Distribution of AE hits vs. time.

Fig. 4. Pattern recognition scheme.
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4. Pattern recognition

A schematic representation of the proposed pattern
recognition scheme which was used for the analysis of
AE signals monitored during the testing, is given in
Fig. 4. Noesis Professional 3.1, software by Physical
Acoustics Corporation, offered a variety of algorithms
for unsupervised PR such as Maxmin Distance, Cluster
Seeking, Forgy, k-means and Isodata [5]. With the
exception of Cluster Seeking (a generalized radial seek-
ing algorithm), all the others are widely known and used
in the literature [7–9]. The determination of the initial
conditions is critical for the performance of the above
algorithms. A most interesting approach [6,9] utilizes
the Maxmin Distance algorithm for a primary classifica-
tion of the data and use the resulting cluster centers as
initial conditions for the application of a PR algorithm.

Moreover, it was decided to test extensively all the
available algorithms and check their performance for
the same problem. Consequently the unsupervised PR
schemes, which were used in this work, are: 1. Maxmin
Distance-Forgy, 2. Maxmin Distance-Cluster Seeking,
3. Maxmin Distance-Isodata, 4. k-means. Only k-means
was used alone, since it does not demand initial condi-
tions but the number of the desired classes. A complete
procedure for performing unsupervised PR was of pri-
mary importance for the authors. The main problem
was the fact that every algorithm involves a number of
predefined parameters which must be set by the user.
These parameters determine the internal operation of
the PR scheme and differ in each case. After systematic
�trial and error�, a parametric analysis was conducted
and the range of interest of those parameters was lo-
cated as well as the step increase of their values. The
clustering results are evaluated using cluster validity cri-
teria. From a plethora of validity criteria, R criterion
and s criterion [10,11] were chosen as they have the
advantage of being independent with the number of
classes. These two criteria give an indication of the com-
pactness and the separation among the resulting classes.
Low values for R and high values for s reveal a success-
ful classification and the formation of well-defined com-
pact clusters. Table 1 summarizes the resulted values of
R and s criteria.

The application of the above described procedure led
to a 3-class clustering. The optimum classification was
provided under the MaxMin distance-Isodata algorith-
mic scheme. The results of the pattern recognition algo-
rithms application is shown in Fig. 5 in principal axes



Fig. 5. Principal components projection of the three resulted clusters.

Table 1
Clustering results

Set of descriptors Used algorithm Number of classes R s

Duration, counts, rise angle, average frequency k-Means 4 0.904 1.360
Maxmin-cluster seeking 3 0.770 1.499
Maxmin-isodata 4 0.770 1.692
Maxmin-isodata 4 1.000 1.275
Maxmin-isodata 3 0.840 1.329

Amplitude, counts to peak, decay angle, energy Maxmin-cluster seeking 3 0.834 1.678
Maxmin-cluster seeking 4 0.780 1.670
Maxmin-isodata 3 0.800 1.703
Maxmin-isodata 3 0.790 1.470

Amplitude, risetime, energy, average frequency k-Means 5 1.024 0.998
Maxmin-cluster seeking 5 0.864 1.490
Maxmin-isodata 3 0.830 1.699
Maxmin-isodata 5 1.000 1.238
Maxmin-isodata 4 0.990 1.417
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projection. The classification is successful and compact
clusters in the nth dimensional space are created. In
our study, n equals 4 because this is the number of the
chosen AE descriptors where the pattern recognition
scheme is based.
5. Failure mode identification

After a successful, according to R and s criteria,
classification of AE data, the resulting clusters should
be correlated with the material�s damage mechanisms.
The most demanding point of the PR approach is to
identify the damage mechanisms [6,10–15] that these
clusters correspond to, in order to understand the
damage evaluation of the materials under investigation
under quasi-static loading of DEN specimens. This is
due to the fact that the classification process does not
lead to a unique solution and there do not exist any
solid and indisputable criteria to determine which clas-
sification result is more appropriate and representative
of the actual damage mechanisms. The first goal of a
PR algorithm is to result in compact and well-sepa-
rated classes. In the present work, this is accomplished
and this is proved by the values of R and s validity
indices, shown in the previous paragraph.

Towards a successful damage mechanisms identifica-
tion, the mechanical behaviour of a fibre-bridged crack



1744 V. Kostopoulos et al. / Composites Science and Technology 67 (2007) 1740–1746
must be well understood. The Class I fracture character-
istics (formation and development of a single macro-
crack) of a brittle-matrix fibre-reinforced composite
are presented in the load–displacement (F–d) behaviour
of Fig. 6 together with a schematic depiction of the dam-
age processes occurring during testing. During the initial
loading stages, reversible mechanical phenomena occur
within the composite (region O! A, stage 2 in Fig.
6). The first matrix crack (point A in Fig. 6) triggers
the appearance of the bridging zone while cracking
evolves (region A! B, stage 3 in Fig. 6) until the mac-
rocrack has fully developed, spanning the total width of
the specimen (point B, stage 4 in Fig. 6). After this stage,
fibres start failing within the volume of the composite
and the load-carrying capacity of the remaining fibres
decreases until a critical number of fibres have failed
(point C in Fig. 6). Failed fibres undergo pull-out and
an additional contribution to the recorded load arises,
owing to friction at the fibre/matrix interface (region
B! D, stage 5 in Fig. 6). Under the global load-sharing
Fig. 6. Load–displacement (F–d) curve typical of Class I composite
fracture and schematic overview of the main fracture processes in the
composite.
principle, each fibre failure is followed by a uniform
redistribution of the remaining load to the surviving fi-
bres. As the portion of load that corresponds to each in-
tact fibre is greater after the redistribution, more failures
are induced and the process evolves until all fibres have
failed (point D in Fig. 6).

Beyond this stage, the load carried by the composite
corresponds entirely to interfacial friction due to pull-
out of failed fibres (region D! X, stage 6 in Fig. 6).
With increasing displacement, fibre ends that were orig-
inally located at various statistical locations inside the
composite are sequentially disengaged from the matrix
until, eventually, the composite separates in two parts.

In summary, the main loading and damage mecha-
nisms [16] typical of Class I composite behaviour are,
in order of appearance: linear elastic composite behav-
iour (O! A), linear elastic fibre behaviour (A! B),
crack bridging by intact and pulled-out fibres (B! D)
and purely frictional bridging due pull-out of failed fi-
bres (D! X). Accordingly, the corresponding F–d

curve of the composite is the sum of three individual
contributions (Fig. 6): a limited contribution corre-
sponding to the load carried during the early loading
stages by the fibres and the brittle matrix, a contribution
corresponding to the load carried by the surviving fibres
which can be assumed identical to that of a fibre bundle
where load is carried by a large number of fibres acting
independently and a contribution corresponding to fric-
tion by fibre pull-out. Beyond the physical understand-
ing of the bridging phenomenon and Class I
behaviour, the activation of the different clusters versus
the applied load, as it is presented in Fig. 7, provide an
additional extremely useful piece of information.

In this figure the different clusters evolution and acti-
vation is very clear. Matrix cracks dominate in the very
beginning of the load rise. Since matrix cracks come to a
point of saturation, stochastic fibre failure becomes the
Fig. 7. Cluster evolution in time.



Fig. 8. Large scale bridging in SiC/MAS-L composite: in situ microscopical damage observation during testing. Magnifications: (a) matrix
microcracking during the early fracture stages; (b) fibre bridging and pull-out.
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prevalent failure mechanism and is responsible for sig-
nificant AE activity. In the final stage interfacial sliding
due to fibre pullout is clearly shown. During monotonic
tensile testing of double edge notched SiC/MAS-L spec-
imens, the outer surface of the specimen (0� ply) was
constantly monitored through Raman microscope by
using a low magnification (4·) lens focusing along the
ligament between the notches. Shortly after the applica-
tion of load, matrix microcracks form and develop at
both notch roots at random vertical positions. The
microcracks are oriented normal to the direction of
loading and, with increasing load, propagate within
the matrix towards the facing notch. The phenomenon
evolves until a critical crack density is established where
the different paths of adjacent microcracks merge to
form a dominant, fully developed macrocrack that
spans the width of the ligament (Fig. 8).

Upon formation of a fully developed macrocrack, the
remaining microcracks do not propagate further. In the
bridging zone bridging fibres stretch, fail in the matrix
and pull-out. The bridging phenomenon is particularly
prominent for the material tested in this study. The
pull-out contribution was also extensive owing to a
weak fibre/matrix interphase.
6. Conclusions

Failure mode identification for SiC/MAS-L compos-
ites, during quasi-static tensile loading was accom-
plished using an unsupervised pattern recognition
analysis to AE data monitored during the tests. A num-
ber of algorithms were used and the results were evalu-
ated based on R and s validity criteria. The cluster
activation plotted against the normalized applied load,
was proved very useful in the identification of the dam-
age mechanisms of the materials. This knowledge was
supported by the assistance of extensive microscopy.
Unsupervised pattern recognition proved a powerful
tool for the classification of AE hits, in the case of cera-
mic composites, and the procedure established is repeat-
able and reliable.
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